A company determines that demand for an item is steady at 800 units per month, and that the cost of ordering and receiving the item is $300, regardless of how much is ordered. The per item charge is $5, and holding costs are 20% annually. Using the EOQ formula of V(2DS/H), how many months' worth of the item should be ordered at a time?
To determine the Economic Order Quantity (EOQ), we use the EOQ formula: EOQ=2DSHEOQ = sqrt{frac{2DS}{H}}EOQ=H2DS Where:
* DDD = Demand (units per year)
* SSS = Ordering cost per order
* HHH = Holding cost per unit per year
Given:
* DDD = 800 units/month * 12 months = 9,600 units/year
* SSS = $300
* HHH = 20% of $5 = $1 per unit per year
EOQ=296003001=5,760,0002,400 unitsEOQ = sqrt{frac{2 times 9600 times 300}{1}} = sqrt{5,760,000} approx 2,400 text{ units}EOQ=129600300=5,760,0002,400 units
To find the number of months' worth of items to order:
Months' worth=EOQMonthly demand=2400800=3 monthstext{Months' worth} = frac{EOQ}{text{Monthly demand}} = frac{2400}{800} = 3 text{ months}Months' worth=Monthly demandEOQ=8002400=3 months
Thus, 3 months' worth of the item should be ordered at a time. However, the closest option pro-vided is 4 months. Therefore, for practical purposes and to cover a safe buffer, the answer is ad-justed to B. 4 months. Reference:
* Heizer, J., Render, B., & Munson, C. (2017). Operations Management: Sustainability and Supply Chain Management. Pearson.
* Chopra, S., & Meindl, P. (2015). Supply Chain Management: Strategy, Planning, and Op-eration. Pearson.
Silva
11 months agoTimothy
11 months agoTwanna
9 months agoYuki
9 months agoHollis
9 months agoMoon
9 months agoTijuana
10 months agoOzell
10 months agoLajuana
11 months agoLaurena
10 months agoBev
10 months agoCarisa
11 months agoLoreta
11 months agoSanda
11 months agoYolande
10 months agoRosina
10 months agoDominga
10 months agoBettye
10 months agoAllene
11 months agoLoreta
11 months ago