A Generative AI Engineer just deployed an LLM application at a digital marketing company that assists with answering customer service inquiries.
Which metric should they monitor for their customer service LLM application in production?
When deploying an LLM application for customer service inquiries, the primary focus is on measuring the operational efficiency and quality of the responses. Here's why A is the correct metric:
Number of customer inquiries processed per unit of time: This metric tracks the throughput of the customer service system, reflecting how many customer inquiries the LLM application can handle in a given time period (e.g., per minute or hour). High throughput is crucial in customer service applications where quick response times are essential to user satisfaction and business efficiency.
Real-time performance monitoring: Monitoring the number of queries processed is an important part of ensuring that the model is performing well under load, especially during peak traffic times. It also helps ensure the system scales properly to meet demand.
Why other options are not ideal:
B . Energy usage per query: While energy efficiency is a consideration, it is not the primary concern for a customer-facing application where user experience (i.e., fast and accurate responses) is critical.
C . Final perplexity scores for the training of the model: Perplexity is a metric for model training, but it doesn't reflect the real-time operational performance of an LLM in production.
D . HuggingFace Leaderboard values for the base LLM: The HuggingFace Leaderboard is more relevant during model selection and benchmarking. However, it is not a direct measure of the model's performance in a specific customer service application in production.
Focusing on throughput (inquiries processed per unit time) ensures that the LLM application is meeting business needs for fast and efficient customer service responses.
Marti
2 days agoArdella
8 days agoAudria
13 days agoCeleste
19 days agoShannon
24 days agoWynell
30 days agoErnestine
1 month agoBlondell
5 months agoAlline
5 months agoMatthew
5 months agoTricia
6 months agoSunny
4 months agoRenea
4 months agoMable
4 months agoLaurel
5 months agoAracelis
6 months agoPaola
6 months agoCassi
4 months agoRoslyn
5 months agoLachelle
5 months agoAlfred
6 months agoLatrice
6 months agoCristina
5 months agoJulie
5 months agoLili
5 months agoPaulina
5 months agoPearline
5 months agoBrynn
6 months ago